Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 114(2): 325-337, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752686

RESUMO

The proper development of male and female gametophytes is critical for successful sexual reproduction and requires a carefully regulated series of events orchestrated by a suite of various proteins. RUVBL1 and RUVBL2, plant orthologues of human Pontin and Reptin, respectively, belong to the evolutionarily highly conserved AAA+ family linked to a wide range of cellular processes. Previously, we found that RUVBL1 and RUVBL2A mutations are homozygous lethal in Arabidopsis. Here, we report that RUVBL1 and RUVBL2A play roles in reproductive development. We show that mutant plants produce embryo sacs with an abnormal structure or with various numbers of nuclei. Although pollen grains of heterozygous mutant plants exhibit reduced viability and reduced pollen tube growth in vitro, some of the ruvbl pollen tubes are capable of targeting ovules in vivo. Similarly, some ruvbl ovules retain the ability to attract wild-type pollen tubes but fail to develop further. The activity of the RUVBL1 and RUVBL2A promoters was observed in the embryo sac, pollen grains, and tapetum cells and, for RUVBL2A, also in developing ovules. In summary, we show that the RUVBL proteins are essential for the proper development of both male and particularly female gametophytes in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Células Germinativas Vegetais/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Pólen , Reprodução , Tubo Polínico/genética , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo
2.
Front Plant Sci ; 13: 767339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350296

RESUMO

Proplastids are essential precursors for multi-fate plastid biogenesis, including chloroplast differentiation, a powerhouse for photosynthesis in plants. Arabidopsis ankyrin repeat protein (AKRP, AT5G66055) is a plastid-localized protein with a putative function in plastid differentiation and morphogenesis. Loss of function of akrp leads to embryo developmental arrest. Whether AKRP is critical pre-fertilization has remained unresolved. Here, using reverse genetics, we report a new allele, akrp-3, that exhibited a reduced frequency of mutant embryos (<13%) compared to previously reported alleles. akrp-3 affected both male and female gametophytes resulting in reduced viability, incompetence in pollen tube attraction, altered gametic cell fate, and embryo arrest that were depleted of chlorophyll. AKRP is widely expressed, and the AKRP-GFP fusion localized to plastids of both gametophytes, in isolated chloroplast and co-localized with a plastid marker in pollen and pollen tubes. Cell-type-specific complementation of akrp-3 hinted at the developmental timing at which AKRP might play an essential role. Our findings provide a plausible insight into the crucial role of AKRP in the differentiation of both gametophytes and coupling embryo development with chlorophyll synthesis.

3.
Plant Cell ; 33(8): 2637-2661, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34124761

RESUMO

Increasing evidence suggests that posttranscriptional regulation is a key player in the transition between mature pollen and the progamic phase (from pollination to fertilization). Nonetheless, the actors in this messenger RNA (mRNA)-based gene expression reprogramming are poorly understood. We demonstrate that the evolutionarily conserved RNA-binding protein LARP6C is necessary for the transition from dry pollen to pollen tubes and the guided growth of pollen tubes towards the ovule in Arabidopsis thaliana. In dry pollen, LARP6C binds to transcripts encoding proteins that function in lipid synthesis and homeostasis, vesicular trafficking, and polarized cell growth. LARP6C also forms cytoplasmic granules that contain the poly(A) binding protein and possibly represent storage sites for translationally silent mRNAs. In pollen tubes, the loss of LARP6C negatively affects the quantities and distribution of storage lipids, as well as vesicular trafficking. In Nicotiana benthamiana leaf cells and in planta, analysis of reporter mRNAs designed from the LARP6C target MGD2 provided evidence that LARP6C can shift from a repressor to an activator of translation when the pollen grain enters the progamic phase. We propose that LARP6C orchestrates the timely posttranscriptional regulation of a subset of mRNAs in pollen during the transition from the quiescent to active state and along the progamic phase to promote male fertilization in plants.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Tubo Polínico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regiões 5' não Traduzidas , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Sítios de Ligação , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos/biossíntese , Lipídeos/genética , Plantas Geneticamente Modificadas , Tubo Polínico/citologia , Tubo Polínico/crescimento & desenvolvimento , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Nicotiana/genética
4.
Annu Rev Plant Biol ; 72: 581-614, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33900787

RESUMO

The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis-a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell-cell communication within the reproductive tissues.


Assuntos
Magnoliopsida , Pólen , Evolução Biológica , Tubo Polínico , Reprodução , Transdução de Sinais
5.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430325

RESUMO

Heat stress (HS) is a major abiotic stress that negatively impacts crop yields across the globe. Plants respond to elevated temperatures by changing gene expression, mediated by transcription factors (TFs) functioning to enhance HS tolerance. The involvement of Group I bZIP TFs in the heat stress response (HSR) is not known. In this study, bZIP18 and bZIP52 were investigated for their possible role in the HSR. Localization experiments revealed their nuclear accumulation following heat stress, which was found to be triggered by dephosphorylation. Both TFs were found to possess two motifs containing serine residues that are candidates for phosphorylation. These motifs are recognized by 14-3-3 proteins, and bZIP18 and bZIP52 were found to bind 14-3-3 ε, the interaction of which sequesters them to the cytoplasm. Mutation of both residues abolished 14-3-3 ε interaction and led to a strict nuclear localization for both TFs. RNA-seq analysis revealed coordinated downregulation of several metabolic pathways including energy metabolism and translation, and upregulation of numerous lncRNAs in particular. These results support the idea that bZIP18 and bZIP52 are sequestered to the cytoplasm under control conditions, and that heat stress leads to their re-localization to nuclei, where they jointly regulate gene expression.


Assuntos
Proteínas 14-3-3/genética , Arabidopsis/genética , Resposta ao Choque Térmico/genética , RNA Longo não Codificante/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição/genética
6.
Plant Reprod ; 34(1): 47-60, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33258014

RESUMO

KEY MESSAGE: Analyses of secretomes of in vitro grown pollen tubes from Amborella, maize and tobacco identified many components of processes associated with the cell wall, signaling and metabolism as well as novel small secreted peptides. Flowering plants (angiosperms) generate pollen grains that germinate on the stigma and produce tubes to transport their sperm cells cargo deep into the maternal reproductive tissues toward the ovules for a double fertilization process. During their journey, pollen tubes secrete many proteins (secreted proteome or secretome) required, for example, for communication with the maternal reproductive tissues, to build a solid own cell wall that withstands their high turgor pressure while softening simultaneously maternal cell wall tissue. The composition and species specificity or family specificity of the pollen tube secretome is poorly understood. Here, we provide a suitable method to obtain the pollen tube secretome from in vitro grown pollen tubes of the basal angiosperm Amborella trichopoda (Amborella) and the Poaceae model maize. The previously published secretome of tobacco pollen tubes was used as an example of eudicotyledonous plants in this comparative study. The secretome of the three species is each strongly different compared to the respective protein composition of pollen grains and tubes. In Amborella and maize, about 40% proteins are secreted by the conventional "classic" pathway and 30% by unconventional pathways. The latter pathway is expanded in tobacco. Proteins enriched in the secretome are especially involved in functions associated with the cell wall, cell surface, energy and lipid metabolism, proteolysis and redox processes. Expansins, pectin methylesterase inhibitors and RALFs are enriched in maize, while tobacco secretes many proteins involved, for example, in proteolysis and signaling. While the majority of proteins detected in the secretome occur also in pollen grains and pollen tubes, and correlate in the number of mapped peptides with relative gene expression levels, some novel secreted small proteins were identified. Moreover, the identification of secreted proteins containing pro-peptides indicates that these are processed in the apoplast. In conclusion, we provide a proteome resource from three distinct angiosperm clades that can be utilized among others to study the localization, abundance and processing of known secreted proteins and help to identify novel pollen tube secreted proteins for functional studies.


Assuntos
Magnoliopsida , Tubo Polínico , Óvulo Vegetal , Peptídeos , Nicotiana , Zea mays
7.
Methods Mol Biol ; 2160: 41-72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32529428

RESUMO

Detection of secreted proteins and peptides during pollen tube guidance has been impeded due to lack of techniques to capture the pollen tube secretome without contamination from the female secreted proteins. Here we present a protocol to detect tobacco pollen tube secreted proteins, semi-in vivo pollen tube secretome assay (SIV-PS), following pollen tube crosstalk with the female reproductive tissues. This method combines the advantages of in vivo pollen tube-pistil interaction and filter-aided sample preparation (FASP) techniques to obtain an in-depth proteome coverage. The SIV-PS method is rapid, efficient, inexpensive, does not require specialized equipment or expertise, and provides a snapshot of the ongoing molecular interplay. We show that the secretome obtained is of greater purity (<1.4% ADH activities) and that pollen tubes are physiologically and cytologically unaffected. A compendium of quality controls is described and a rough guide on downstream bioinformatics analysis is outlined. The SIV-PS method is applicable to all studies of protein secretion using pollen tube as a model and can be easily adapted to other flowering species with modification. The overall duration for this protocol is approximately 8 hours spanning 4 days (an average of 2 h/day per two workers) excluding microscopy and LC-MS/MS analysis.


Assuntos
Exocitose , Tubo Polínico/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Cromatografia Líquida/métodos , Magnoliopsida , Espectrometria de Massas/métodos , Óvulo Vegetal/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteoma/química
8.
Development ; 147(11)2020 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-32345744

RESUMO

Precise guided pollen tube growth by the female gametophyte is a prerequisite for successful sexual reproduction in flowering plants. Cysteine-rich proteins (CRPs) secreted from the embryo sac are known pollen tube attractants perceived by pollen tube receptor-like kinases. How pre-mRNA splicing facilitates this cell-to-cell communication is not understood. Here, we report a novel function of Pre-mRNA PROCESSING factor 8 paralogs, PRP8A and PRP8B, as regulators of pollen tube attraction. Double mutant prp8a prp8b ovules cannot attract pollen tubes, and prp8a prp8b pollen tubes fail to sense the ovule's attraction signals. Only 3% of ovule-expressed genes were misregulated in prp8a prp8b Combination of RNA sequencing and the MYB98/LURE1.2-YFP reporter revealed that the expression of MYB98, LUREs and 49 other CRPs were downregulated, suggesting loss of synergid cell fate. Differential exon usage and intron retention analysis revealed autoregulation of PPR8A/PRP8B splicing. In vivo, PRP8A co-immunoprecipitates with splicing enhancer AtSF3A1, suggesting involvement of PRP8A in 3'-splice site selection. Our data hint that the PRP8A/PRP8B module exhibits spliceosome autoregulation to facilitate pollen tube attraction via transcriptional regulation of MYB98, CRPs and LURE pollen tube attractants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tubo Polínico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Microscopia de Fluorescência , Mutagênese , Plantas Geneticamente Modificadas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Sítios de Splice de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plant Physiol ; 178(1): 258-282, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30007911

RESUMO

Reproduction success in angiosperm plants depends on robust pollen tube growth through the female pistil tissues to ensure successful fertilization. Accordingly, there is an apparent evolutionary trend to accumulate significant reserves during pollen maturation, including a population of stored mRNAs, that are utilized later for a massive translation of various proteins in growing pollen tubes. Here, we performed a thorough transcriptomic and proteomic analysis of stored and translated transcripts in three subcellular compartments of tobacco (Nicotiana tabacum), long-term storage EDTA/puromycin-resistant particles, translating polysomes, and free ribonuclear particles, throughout tobacco pollen development and in in vitro-growing pollen tubes. We demonstrated that the composition of the aforementioned complexes is not rigid and that numerous transcripts were redistributed among these complexes during pollen development, which may represent an important mechanism of translational regulation. Therefore, we defined the pollen sequestrome as a distinct and highly dynamic compartment for the storage of stable, translationally repressed transcripts and demonstrated its dynamics. We propose that EDTA/puromycin-resistant particle complexes represent aggregated nontranslating monosomes as the primary mediators of messenger RNA sequestration. Such organization is extremely useful in fast tip-growing pollen tubes, where rapid and orchestrated protein synthesis must take place in specific regions.


Assuntos
Perfilação da Expressão Gênica/métodos , Pólen/genética , Pólen/metabolismo , Proteômica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Polirribossomos/genética , Polirribossomos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
10.
Plant Reprod ; 30(1): 1-17, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27896439

RESUMO

KEY MESSAGE : bZIP TF network in pollen. Transcriptional control of gene expression represents an important mechanism guiding organisms through developmental processes and providing plasticity towards environmental stimuli. Because of their sessile nature, plants require effective gene regulation for rapid response to variation in environmental and developmental conditions. Transcription factors (TFs) provide such control ensuring correct gene expression in spatial and temporal manner. Our work reports the interaction network of six bZIP TFs expressed in Arabidopsis thaliana pollen and highlights the potential functional role for AtbZIP18 in pollen. AtbZIP18 was shown to interact with three other pollen-expressed bZIP TFs-AtbZIP34, AtbZIP52, and AtbZIP61 in yeast two-hybrid assays. AtbZIP18 transcripts are highly expressed in pollen, and at the subcellular level, an AtbZIP18-GFP fusion protein was located in the nucleus and cytoplasm/ER. To address the role of AtbZIP18 in the male gametophyte, we performed phenotypic analysis of a T-DNA knockout allele, which showed slightly reduced transmission through the male gametophyte. Some of the phenotype defects in atbzip18 pollen, although observed at low penetrance, were similar to those seen at higher frequency in the T-DNA knockout of the interacting partner, AtbZIP34. To gain deeper insight into the regulatory role of AtbZIP18, we analysed atbzip18/- pollen microarray data. Our results point towards a potential repressive role for AtbZIP18 and its functional redundancy with AtbZIP34 in pollen.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Pólen/metabolismo , Arabidopsis/citologia , Arabidopsis/ultraestrutura , DNA de Plantas , Dimerização , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/ultraestrutura , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/metabolismo
11.
Planta ; 245(3): 549-561, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27900472

RESUMO

MAIN CONCLUSION: In tobacco, three sequence variants of the TERT gene have been described. We revealed unbalanced levels of TERT variant transcripts in vegetative tobacco tissues and enhanced TERT transcription and telomerase activity in reproductive tissues. Telomerase is a ribonucleoprotein complex responsible for the maintenance of telomeres, structures delimiting ends of linear eukaryotic chromosomes. In the Nicotiana tabacum (tobacco) allotetraploid plant, three sequence variants (paralogs) of the gene coding for the telomerase reverse transcriptase subunit (TERT) have been described, two of them derived from the maternal N. sylvestris genome (TERT_Cs, TERT_D) and one originated from the N. tomentosiformis paternal genome (TERT_Ct). In this work, we analyzed the transcription of TERT variants in correlation with telomerase activity in tobacco tissues. High and approximately comparable levels of TERT_Ct and TERT_Cs transcripts were detected in seedlings, roots, flower buds and leaves, while the transcript of the TERT_D variant was markedly underrepresented. Similarly, in N. sylvestris tissues, TERT_Cs transcript significantly predominated. A specific pattern of TERT transcripts was found in samples of tobacco pollen with the TERT_Cs variant clearly dominating particularly at the early stage of pollen development. Detailed analysis of TERT_C variants representation in functionally distinct fractions of pollen transcriptome revealed their prevalence in large ribonucleoprotein particles encompassing translationally silent mRNA; only a minority of TERT_Ct and TERT_Cs transcripts were localized in actively translated polysomes. Histones of the TERT_C chromatin were decorated predominantly with the euchromatin-specific epigenetic modification in both telomerase-positive and telomerase-negative tobacco tissues. We conclude that the existence and transcription pattern of tobacco TERT paralogs represents an interesting phenomenon and our results indicate its functional significance. Nicotiana species have again proved to be appropriate and useful model plants in telomere biology studies.


Assuntos
Regulação da Expressão Gênica de Plantas , Variação Genética , Nicotiana/genética , Especificidade de Órgãos/genética , Telomerase/genética , Núcleo Celular/genética , Imunoprecipitação da Cromatina , Eucromatina/metabolismo , Histonas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Polirribossomos/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Telomerase/metabolismo , Transcrição Gênica
12.
Genome Biol ; 17: 81, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27139692

RESUMO

BACKGROUND: As in animals, cell-cell communication plays a pivotal role in male-female recognition during plant sexual reproduction. Prelaid peptides secreted from the female reproductive tissues guide pollen tubes towards ovules for fertilization. However, the elaborate mechanisms for this dialogue have remained elusive, particularly from the male perspective. RESULTS: We performed genome-wide quantitative liquid chromatography-tandem mass spectrometry analysis of a pistil-stimulated pollen tube secretome and identified 801 pollen tube-secreted proteins. Interestingly, in silico analysis reveals that the pollen tube secretome is dominated by proteins that are secreted unconventionally, representing 57 % of the total secretome. In support, we show that an unconventionally secreted protein, translationally controlled tumor protein, is secreted to the apoplast. Remarkably, we discovered that this protein could be secreted by infiltrating through the initial phases of the conventional secretory pathway and could reach the apoplast via exosomes, as demonstrated by co-localization with Oleisin1 exosome marker. We demonstrate that translationally controlled tumor protein-knockdown Arabidopsis thaliana plants produce pollen tubes that navigate poorly to the target ovule and that the mutant allele is poorly transmitted through the male. Further, we show that regulators of the endoplasmic reticulum-trans-Golgi network protein secretory pathway control secretion of Nicotiana tabacum Pollen tube-secreted cysteine-rich protein 2 and Lorelei-like GPI-anchor protein 3 and that a regulator of endoplasmic reticulum-trans-Golgi protein translocation is essential for pollen tube growth, pollen tube guidance and ovule-targeting competence. CONCLUSIONS: This work, the first study on the pollen tube secretome, identifies novel genome-wide pollen tube-secreted proteins with potential functions in pollen tube guidance towards ovules for sexual reproduction. Functional analysis highlights a potential mechanism for unconventional secretion of pollen tube proteins and reveals likely regulators of conventional pollen tube protein secretion. The association of pollen tube-secreted proteins with marker proteins shown to be secreted via exosomes in other species suggests exosome secretion is a possible mechanism for cell-cell communication between the pollen tube and female reproductive cells.


Assuntos
Fertilização , Nicotiana/genética , Proteínas de Plantas/genética , Tubo Polínico/genética , Proteoma , Via Secretória , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Polinização , Nicotiana/fisiologia
13.
Plant Reprod ; 29(1-2): 31-51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26728623

RESUMO

KEY MESSAGE: Overview of pollen development. Male gametophyte development of angiosperms is a complex process that requires coordinated activity of different cell types and tissues of both gametophytic and sporophytic origin and the appropriate specific gene expression. Pollen ontogeny is also an excellent model for the dissection of cellular networks that control cell growth, polarity, cellular differentiation and cell signaling. This article describes two sequential phases of angiosperm pollen ontogenesis-developmental phase leading to the formation of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains on the stigma surface and ending at double fertilization. Here we present an overview of important cellular processes in pollen development and explosive pollen tube growth stressing the importance of reserves accumulation and mobilization and also the mutual activation of pollen tube and pistil tissues, pollen tube guidance and the communication between male and female gametophytes. We further describe the recent advances in regulatory mechanisms involved such as posttranscriptional regulation (including mass transcript storage) and posttranslational modifications to modulate protein function, intracellular metabolic signaling, ionic gradients such as Ca(2+) and H(+) ions, cell wall synthesis, protein secretion and intercellular signaling within the reproductive tissues.


Assuntos
Magnoliopsida/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Pólen/metabolismo
14.
Genom Data ; 3: 106-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26484158

RESUMO

Pollen, an extremely reduced bicellular or tricellular male reproductive structure of flowering plants, serves as a model for numerous studies covering wide range of developmental and physiological processes. The pollen development represents a fragile and vital phase of plant ontogenesis and pollen was among the first singular plant tissues thoroughly characterized at the transcriptomic level (Honys and Twell [5]). Arabidopsis pollen developmental transcriptome has been published over a decade ago (Honys and Twell, 2004) and transcriptomes of developing pollen of other species have followed (Rice, Deveshwar et al. [2]; Triticeae, Tran et al. [11]; upland cotton, Ma et al. [8]). However, the transcriptomic data describing the development of tobacco pollen, a bicellular model for cell biology studies, have been missing. Here we provide the transcriptomic data covering three stages (Tupý et al., 1983) of wild type tobacco (Nicotiana tabacum, cv. Samsun) pollen development: uninucleate microspores (UNM, stage 1), early bicellular pollen (eBCP, stage 3) and late bicellular pollen (lBCP, stage 5) as a supplement to the mature pollen (MP), 4 h-pollen tube (PT4), 24 h-pollen tubes (PT24), leaf (LF) and root (RT) transcriptomic data presented in our previous studies (Hafidh et al., 2012a; Hafidh et al., 2012b). We characterized these transcriptomes to refine the knowledge base of male gametophyte-enriched genes as well as genes expressed preferentially at the individual stages of pollen development. Alongside updating the list of tissue-specific genes, we have investigated differentially expressed genes with respect to early expressed genes. Pollen tube growth and competition of pollen tubes in female pistil can be viewed as a race of the fittest. Accordingly, there is an apparent evolutionary trend among higher plants to store significant material reserves and nutrients during pollen maturation. This supply ensures that after pollen germination, the pollen tube utilizes its resource predominantly for its rapid elongation in the female pistil. Previous transcriptomic data from Arabidopsis showed massive expression of genes encoding proteins forming both ribosomal subunits that were accumulated in developing pollen, whereas their expression was not detectable in growing pollen tubes (Honys and Twell, 2004). We observed a similar phenomenon in less advanced bicellular tobacco pollen. Here, we describe in detail how we obtained and analyzed validated microarray dataset deposited in Gene Expression Omnibus (GSE62349).

15.
Biochem Soc Trans ; 42(2): 388-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646249

RESUMO

The journey undertaken by the pollen tube in angiosperms to reach the deeply embedded female gametophyte for fertilization involves persistent guidance by the female gametophyte and accurate perception of the signals by the pollen tube. Several ovule-secreted peptides have been identified. Nevertheless, there are no exact findings on how these signals are perceived by the pollen tube. As a novel approach, we have improvised a modified SIV (semi-in vivo) technique, SIV-PS (SIV pollen tube secretome), to perform gel-free LC-MS/MS for high-throughput analysis of pollen-tube-secreted proteins. Our approach has led to the identification of over 1400 protein groups. Among them are pollen-tube-secreted ligands and receptor proteins representing potential male components in perceiving ovule-emitted cues for guidance. The present article reviews the missing link in pollen tube perception and showcases the improvised SIV-PS as a tool for high-throughput and targeted study of the pollen tube secretome.


Assuntos
Tubo Polínico/metabolismo , Tubo Polínico/fisiologia , Quimiotaxia/fisiologia , Ligantes , Plantas/metabolismo , Transdução de Sinais/fisiologia
16.
Curr Biol ; 23(14): R599-601, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23885870

RESUMO

Pollen formation, while critical for the success of plant reproduction, also represents an important paradigm for differential cellular development within small groups of cells. In Arabidopsis thaliana pollen, the male meiotic product first divides asymmetrically to form a vegetative and a generative (germ) cell, the latter then dividing to generate two sperm cells. Here we have used artificial microRNAs to study small RNA processing in the different pollen cell types. Our data suggest that translational repression by small RNAs is enhanced in the sperm. This work also provides insights into germline RNA movement and the cell-autonomous action of microRNAs.


Assuntos
Arabidopsis/genética , MicroRNAs/genética , Pólen/genética , Interferência de RNA , RNA de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , MicroRNAs/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Reação em Cadeia da Polimerase , RNA de Plantas/metabolismo
17.
Plant Signal Behav ; 7(8): 918-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22827945

RESUMO

In our previous study we applied the Agilent 44K tobacco gene chip to introduce and analyze the tobacco male gametophyte transcriptome in mature pollen and 4h pollen tubes. Here we extended our analysis post-pollen mitosis II (PMII) by including a new data set obtained from more advanced stage of the ongoing progamic phase - pollen tubes cultivated in vitro for 24 h. Pollen mitosis II marks key events in the control of male gametophyte development, the production of two sperm cells. In bicellular species covering cca 70% of angiosperms including Nicotiana tabacum, PMII takes place after pollen germination in growing pollen tube. We showed the stable and even slightly increasing complexity of tobacco male gametophyte transcriptome over long period of progamic phase-24 h of pollen tube growth. We also demonstrated the ongoing transcription activity and specific transcript accumulation in post-PMII pollen tubes cultivated in vitro. In all, we have identified 320 genes (2.2%) that were newly transcribed at least after 4h of pollen tube cultivation in vitro. Further, 699 genes (4.8%) showed over 5-fold increased accumulation after the 24h of cultivation.


Assuntos
Mitose/genética , Nicotiana/citologia , Nicotiana/genética , Tubo Polínico/citologia , Tubo Polínico/genética , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Análise de Componente Principal
18.
BMC Plant Biol ; 12: 24, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22340370

RESUMO

BACKGROUND: Many flowering plants produce bicellular pollen. The two cells of the pollen grain are destined for separate fates in the male gametophyte, which provides a unique opportunity to study genetic interactions that govern guided single-cell polar expansion of the growing pollen tube and the coordinated control of germ cell division and sperm cell fate specification. We applied the Agilent 44 K tobacco gene chip to conduct the first transcriptomic analysis of the tobacco male gametophyte. In addition, we performed a comparative study of the Arabidopsis root-hair trichoblast transcriptome to evaluate genetic factors and common pathways involved in polarized cell-tip expansion. RESULTS: Progression of pollen grains from freshly dehisced anthers to pollen tubes 4 h after germination is accompanied with > 5,161 (14.9%) gametophyte-specific expressed probes active in at least one of the developmental stages. In contrast, > 18,821 (54.4%) probes were preferentially expressed in the sporophyte. Our comparative approach identified a subset of 104 pollen tube-expressed genes that overlap with root-hair trichoblasts. Reverse genetic analysis of selected candidates demonstrated that Cu/Zn superoxide dismutase 1 (CSD1), a WD-40 containing protein (BP130384), and Replication factor C1 (NtRFC1) are among the central regulators of pollen-tube tip growth. Extension of our analysis beyond the second haploid mitosis enabled identification of an opposing-dynamic accumulation of core regulators of cell proliferation and cell fate determinants in accordance with the progression of the germ cell cycle. CONCLUSIONS: The current study provides a foundation to isolate conserved regulators of cell tip expansion and those that are unique for pollen tube growth to the female gametophyte. A transcriptomic data set is presented as a benchmark for future functional studies using developing pollen as a model. Our results demonstrated previously unknown functions of certain genes in pollen-tube tip growth. In addition, we highlighted the molecular dynamics of core cell-cycle regulators in the male gametophyte and postulated the first genetic model to account for the differential timing of spermatogenesis among angiosperms and its coordination with female gametogenesis.


Assuntos
Nicotiana/genética , Pólen/genética , Transcriptoma , Arabidopsis/genética , Ciclo Celular/genética , Gametogênese Vegetal , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Germinação , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/genética , Tubo Polínico/crescimento & desenvolvimento , RNA de Plantas/genética
19.
Adv Exp Med Biol ; 722: 118-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915786

RESUMO

The mRNA-protein complexes (mRNPs, Messenger ribonucleoprotein particles) are the "couriers" of the modern eukaryotes that process, store and deliver messages (transcripts) from the nucleus to the appropriate subcellular compartments and beyond. Presence of mRNPs arbitrates the posttranscriptional control of gene expression by editing the precursor RNA to maturity, postulate its subcellular localization and/or storage and dictate its fate once in the cytoplasm; either to be translated or dispensed through mRNA degradation. Initiation of transcription is coupled with processing of the transcribed message and the immediate association of the transcript with a set of structural and regulatory proteins. Per se, mRNP complexes sub-optimize transcription by recruiting RNA-binding proteins which are the core component of the RNP activities that culminate overall distribution and abundance of individual proteins. This asymmetric distribution of the mRNA is the determinant of protein gradient and is known to influence cell polarity, cell fate and overall patterning during development. Embryo patterning in Drosophila, polarization of maternal mRNA to daughter cell in budding yeast and directional growth of mammalian neural cell and pollen tubes of flowering plants, are the most prominent examples of mRNP facilitated posttranscriptional control, influencing cell fates and patterns of development.This chapter addresses the current knowledge on the mechanisms of posttranscriptional control reinforced by the formation of RNP particles and reviews differences in the underlying mechanisms. The outline of the chapter encompasses step-wise cellular processes leading to the formation of mRNPs and its implication to cellular activities. A dedicated section is also integrated discussing the recent findings on the unique mechanism of RNP formation in the male gametophyte of Nicotiana tabaccum. A proposed model outlines the network of posttranscriptional control with a focus on the role of RNPs is also presented aiming to stimulate future research with a perspective of advancing our knowledge on the subject and its plausible application in improving food quality.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Citoesqueleto/metabolismo , Humanos , Modelos Biológicos , Transporte Proteico , Estabilidade de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética
20.
Mol Plant ; 2(3): 500-12, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19825633

RESUMO

Small non-coding RNAs are essential for development of the sporophyte, the somatic diploid phase of flowering plants. They are integral to key cellular processes such as defense, generation of chromatin structure, and regulation of native gene expression. Surprisingly, very little is known of their presence and function in the male haploid phase of plant development (male gametophyte/pollen grain), where dramatic cell fate changes leading to gametogenesis occur over just two mitotic divisions. We show that critical components of small RNA pathways are expressed throughout pollen development, but in a pattern that differs from the sporophyte. We also demonstrate that mature pollen accumulates a range of mature microRNAs, the class of small RNA most frequently involved in post-transcriptional regulation of endogenous gene expression. Significantly, these miRNAs cleave their target transcripts in developing pollen-a process that seemingly contributes to the purging of key regulatory transcripts from the mature pollen grain. Small RNAs are thus likely to make a hitherto unappreciated contribution to male gametophyte gene expression patterns, pollen development, and gametogenesis.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Células Germinativas Vegetais/fisiologia , Magnoliopsida/citologia , MicroRNAs/fisiologia , RNA Interferente Pequeno/fisiologia , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Células Germinativas , Hibridização In Situ , Magnoliopsida/genética , Magnoliopsida/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Pólen/fisiologia , Transdução de Sinais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...